Identification of an allene oxide synthase (CYP74C) that leads to formation of alpha-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato.

نویسندگان

  • Michael Stumpe
  • Cornelia Göbel
  • Kirill Demchenko
  • Manuela Hoffmann
  • Ralf B Klösgen
  • Katharina Pawlowski
  • Ivo Feussner
چکیده

Allene oxide synthase (AOS) enzymes are members of the cytochrome P450 enzyme family, sub-family CYP74. Here we describe the isolation of three cDNAs encoding AOS from potato (StAOS1-3). Based on sequence comparisons, they represent members of either the CYP74A (StAOS1 and 2) or the CYP74C (StAOS3) sub-families. StAOS3 is distinguished from the other two AOS isoforms in potato by its high substrate specificity for 9-hydroperoxides of linoleic and linolenic acid, compared with 13-hydroperoxides, which are only poor substrates. The highest activity was shown with (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) as a substrate. This hydroperoxide was metabolized in vitro to alpha- and gamma-ketols as well as to the cyclopentenone compound 10-oxo-11-phytoenoic acid. They represent hydrolysis products of the initial StAOS3 product 9,10-epoxyoctadecadienoic acid, an unstable allene oxide. By RNA gel hybridization blot analysis, StAOS3 was shown to be expressed in sprouting eyes, stolons, tubers and roots, but not in leaves. StAOS3 protein was found in all organs tested, but mainly in stems, stolons, sprouting eyes and tubers. As in vivo reaction products, the alpha-ketols derived from 9-hydroperoxides of linoleic and linolenic acid were only found in roots, tubers and sprouting eyes. Immunolocalization showed that StAOS3 was associated with amyloplasts and leucoplasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids.

Allene oxide synthase (AOS) is a cytochrome P-450 (CYP74A) that catalyzes the first step in the conversion of 13-hydroperoxy linolenic acid to jasmonic acid and related signaling molecules in plants. Here, we report the molecular cloning and characterization of a novel AOS-encoding cDNA (LeAOS3) from Lycopersicon esculentum whose predicted amino acid sequence classifies it as a member of the CY...

متن کامل

Molecular cloning, functional expression, and tissue distribution of a potato sprout allene oxide synthase involved in a 9-lipoxygenase pathway.

Potato (Solanum tuberosum) plants are rich in 9-lipoxygenase, which converts linoleic acid and alpha-linolenic acid to 9S-hydroperoxy-10E,12Z-octadecadienoic acid (9-HPOD) and 9S-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid (9-HPOT) respectively. The allene oxide synthase (AOS) involved in 9-HPOD/9-HPOT metabolism in potato, however, has not been characterized in detail. We cloned a cDNA encod...

متن کامل

METHODS Method to Produce 9(S)-Hydroperoxides of Linoleic and Linolenic Acids by Maize Lipoxygenase

Seed from maize (corn) Zea mays provides a ready source of 9-lipoxygenase that oxidizes linoleic acid and Iinolenic acid into 9(5)-hydroperoxy-1 0(8, 12(Zl-octadecadienoic acid and 9(SJ-hydroperoxy-1 0(£), 12(Zj, 15(Zl-octadecatrienoic acid, respectively. Corn seed has a very active hydroperoxide-decomposing enzyme, allene oxide synthase (AOS), which must be removed prior to oxidizing the fatty...

متن کامل

Molecular cloning and functional expression of soybean allene oxide synthases.

A plant allene oxide synthase (AOS) reacting with 13S-hydroperoxy-9Z,11E,15Z-octadecatrienoic acid (13-HPOT), a lipoxygenase product of alpha-linolenic acid, provides an allene oxide which functions as an intermediate for jasmonic acid (JA) synthesis, making AOS a key enzyme regulating the JA level in plants. Although AOSs in various plants have been investigated, there is only limited informat...

متن کامل

The lipoxygenase pathway in tulip (Tulipa gesneriana): detection of the ketol route.

The in vitro metabolism of [1-(14)C]linoleate, [1-(14)C]linolenate and their 9(S)-hydroperoxides was studied in cell-free preparations from tulip (Tulipa gesneriana) bulbs, leaves and flowers. Linoleate and its 9-hydroperoxide were converted by bulb and leaf preparations into three ketols: (12Z)-9-hydroxy-10-oxo-12-octadecadienoic acid (alpha-ketol), (11E)-10-oxo-13-hydroxy-11-octadecadienoic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 2006